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The direct coupling of a headspace sampler with a mass spectrometer is proposed as a screening tool for the rapid detection o
by hydrocarbons from petroleum and derivatives. The samples are subjected to the headspace generation process, with no prior
the volatiles generated are introduced directly into the mass spectrometer, thereby obtaining a fingerprint of the sample analy
treatment of the signal by chemometric techniques allows unequivocal characterisation of the different types of sample. The us
chromatography with a mass spectrometer detector coupled to the headspace sampler allows identification of the major hydroca
in the mineral and organic polluted samples, interpretation of the results obtained, and demonstrates the analytical potential of hea
spectrometry coupling.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Petroleum crude oils and derivatives are one of the main
sources of the pollution by hydrocarbons of matrices of envi-
ronmental interest[1]. Gas chromatographic methods [both
GC–MS and GC–flame ionisation detection (FID)] have be-
come the most popular tool for the identification and quan-
tification of this kind of pollution[2]. Previous treatment of
the sample, which may include preconcentration steps such
as solid-phase microextraction or purge-and-trap[3,4], is the
most costly and time-consuming part of the process and one
of the most frequent sources of errors[5].

Throughput in the analytical laboratory can be increased
significantly by developing non-separative methods for the
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resolution of different analytical problems, resulting in l
operational costs per sample. In this sense, the direct co
of mass spectrometry with methods such as solid-
microextraction (SPME)[6,7], or headspace (HS) ge
ation [8–12] has been developed for the characteriz
of different samples. Compared to other time-consu
complex separation methods, the signal provided by
techniques can be used as a “fingerprint” that co
enough information – when suitably processed wit
appropriate chemometric techniques – to make dec
about the proposed problem. In this context, direct cou
of solid-phase microextraction with Raman spectro
(SPME–Raman)[13] and solid-phase extraction with
spectroscopy (SPE–IR)[14] have been proposed for the s
of pollution due to hydrocarbons.

The collection of profile signals provides little informa
about the individual volatile compounds present in the
ple. In cases in which it is necessary to obtain more sp
information, chromatographic separation techniques m
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used. In this sense, the development of fast gas chromato-
graphic techniques considerably reduces the analysis time
required for the identification and/or quantification of the
compounds[15–17]. The main development of faster GC
methods has been observed in the field of environmental anal-
ysis [18–20]. The advantages of HS–MS coupled together
with those of fast gas chromatography (FGC) suggest that
HS–FGC–MS has an important analytical potential for the
rapid detection and identification (where necessary) of pol-
lutants in environmental matrices.

In previous works we have recently proposed the direct
coupling of a headspace sampler with a mass spectrometer
(HS–MS) for the rapid detection of soil contamination by
crude oil and derivatives[21] and the use of multiplicative
calibration transfer for the generation of multivariate calibra-
tion models valid over long periods of time, for the quan-
tification of volatile organic compounds (VOCs) comprising
the species benzene, toluene, methyltert-butyl ether, ethyl-
benzene,m-xylene and mesitylene[22]. The procedure does
not require any chromatographic step since it is based exclu-
sively on the generation of volatiles and later analysis using
a quadrupole mass detector.

In this work we propose the use of the HS–MS methodol-
ogy as a screening tool for the rapid detection of soil pollution
due to petroleum hydrocarbons. The model used to the pre-
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Table 1
Set of samples used in this work

Class Samples Totala

Unpolluted Clean sand 10
Beach sands (from Spain) 3
Arenosol, Histosol and Vertisol (from Mexico) 3

Pollutedb Iran light crude oil (1.4–431 mg/kg) 10
Brass river light crude oil (1.3–409 mg/kg) 10
Diesel fuel (1.2–371 mg/kg) 10

Unknown Soils 1–22 (from Mexico) 22
a Beach sand samples and polluted samples were run in triplicate.
b All samples in the polluted class have been prepared in the laboratory

by spiking the commercial clean sand with the different pollutants at 10
uniformly distributed concentration levels.

Ap, with an organic matter content between 0.1 and 14%, a
clay content between 50 and 480 g/kg, pH between 4.6 and
8.3, and a cation-exchange capacity (CEC) between 0.8 and
51.1 cmol/kg. The second samples (2, 3, 4, 7, 9, 11, 12, 14,
16, 19, and 20) were from horizon type Ai, with an organic
matter content between 27 and 95%, pH between 4.0 and
6.8, and a CEC between 39 and 130.2 cmol/kg. All samples
were collected in metallic containers and stored at−5◦C until
analysis. All of them were analysed by HS–MS, HS–GC–MS
and HS–FGC–MS.

Additionally, a set of samples prepared at the laboratory
and measured two and a half years previously[21] was used
for the generation of the PCA and LDA models. This set of
samples comprised a subset of 90 polluted samples (commer-
cial clean sand spiked at ten uniformly distributed concentra-
tion levels with Iran light crude oil, Brass River light crude
oil, and diesel fuel, respectively and analysed in triplicate)
and a subset of 19 unpolluted samples (10 commercial clean
sand, and three beach sand samples from Spain, the last ones
analysed in triplicate).Table 1shows the set of samples used
in this work both for constructing the different models and
for the prediction of unknown samples.

2.2. Apparatus
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iction of the samples was constructed with polluted sam
repared at the laboratory with clean commercial sand.
n internal standardization pretreatment process of the
als obtained permits the construction of a stable model

or long periods of time with excellent results as regards
iction.

Additionally, we performed chromatographic s
ration of all unknown samples by headspace
hromatography–mass spectrometry (HS–GC–MS)
eadspace–fast gas chromatography–mass spectro
HS–FGC–MS) to identify the volatiles of the differe
amples analysed. This information was used to interpre
esults obtained with the chemometric techniques carrie
hierarchical cluster analysis (HCA), principal compon
nalysis (PCA) and linear discriminant analysis (LDA)] a

o show the analytical potential of the HS–MS coupling.

. Experimental

.1. Samples

Twenty-five soil samples from Mexico were studi
hree of them were reference samples known not to

ain remains of hydrocarbons from petroleum [Histosol
ertisol (V) and Arenosol (A)]. The other 22 samples (s
les 1–22) were soils collected from different zones of
rovince of Tabasco, concerning which their possible

amination was a priori unknown. These samples inclu
oth mineral and organic soils. The first ones (samples
, 8, 10, 13, 15, 17, 18, 21, and 22) were from horizon
Sample analyses were performed with an Agi
890/5793 GC/MSD system coupled to a headspace sam
his headspace sampler (HP 7694) is equipped with a tra
4 consecutive samples, an oven with positions for six
le vials, where the headspace is generated, and a sam
ystem comprising a stainless steel needle, a 316-SS si
alve with a nickel loop, and two solenoid valves (for pr
urization and venting). Data collection was performed
irouette v3.0[23] software from Infometrix on a Hewlet
ackard PC computer that also controlled the MS det
arameters. Two different columns were used for the c
atographic separations: an HP-5MS (5%)-diphenyl-(95
imethylsiloxane capillary column (30 m× 0.25 mm; film

hickness, 0.25�m) purchased from Supelco (Bellefonte, P
SA), and a poly(siloxane) phase DB-VRX capillary c
mn (20 m× 0.18 mm; film thickness, 1.00�m) purchase
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from J&W Scientific (Folsom, CA, USA). The composition
of DB-VRX is considered proprietary information.

2.3. Procedure

2.3.1. HS–GC–MS
For the analysis of volatile compounds, aliquots of 2 g of

each soil sample available – polluted, unpolluted, and un-
known – were placed in 10-mL vials and sealed hermetically
with silicone septum caps. These vials were introduced in the
oven of the headspace sampler at a temperature of 95◦C for
45 min where the headspace is generated, whereas the tem-
perature of the nickel loop was 120◦C. The volatiles gener-
ated were injected in the chromatographic system through a
thermostatted transfer line heated to 130◦C.

To perform the gas chromatographic measurements, the
column (HP-5MS) was initially maintained at 35◦C for
2 min; then, temperature was increased to 250◦C at a rate
of 10◦C/min, which was then held for an additional 3 min.
For the fast gas chromatographic analysis, the column (DB-
VRX) was initially maintained at 50◦C for 0.1 min; after this
time, the temperature was first increased to 175◦C at a rate
of 60◦C/min and then increased to 240 at 45◦C/min, which
was then held for an additional 4 min.

The carrier gas was helium N50 (99.995% pure, from Air
Liquide). Them/zrange was 49–160 amu and the compounds
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For analysis with supervised pattern recognition tech-
niques (LDA) the model generation step was carried out with
a set of samples (training set) formed by the spiked clean sand
and clean sand samples, the three beach sand samples, and the
reference samples Histosol, Vertisol, and Arenosol (90 pol-
luted samples and 22 unpolluted samples). The 22 unknown
samples of Mexican soil (not included in the models) were
used to study the prediction capacity of the model.

3. Results and discussion

3.1. HS–MS methodology

3.1.1. Cluster analysis
Once the signals of the unknown and reference samples

had been obtained, a cluster analysis was performed. To ap-
ply this technique of exploratory analysis, the signals were
normalised internally in such a way that the intensity of each
mass–charge relationship was divided by the sum of the inten-
sities of all the fragments in the interval recorded (49–160).

When the Euclidean distance was used as a measure of
similarity and complete linkage as a way to generate clusters,
the dendrogram shown inFig. 1was obtained. In that figure,
two main clusters can be seen (“a” and “b”), each subdivided
i e “a”
g e.

Fig. 1. Complete linkage dendrogram obtained with hierarchical cluster
analysis for the samples from Mexico including the reference Arenosol (A),
Histosol (H), and Vertisol (V) samples and the unknown samples.
ere identified by comparison of their experimental spe
ith those of the NIST’98 data bank (NIST/EPA/NIH Ma
pectral Library, version 1.6, USA).

.3.2. HS–MS
In order to measure the patterns of volatiles of the soil s

les without chromatographic separation (HS–MS met
logy), the oven temperature was maintained high en
240◦C) to prevent retention of the injected volatile co
ounds. The total ion current signal was obtained in
/z range considered (49–160 amu; threshold: 150; sca
.48).

.4. Data analysis

Internal normalization involves expressing each m
ragment of each individual spectrum as a percentag
he sum of the mass fragments and was accomplished
irouette software.
These normalized data were subjected to analysis

he different pattern recognition techniques to evaluate
iscriminating power of the HS–MS methodology. HCA a
CA were performed with Pirouette v3.0 software, while
ARVUS statistical package (Geneva, Italy)[24] was used t
erform the LDA.

The hierarchical cluster analysis was performed with
5 samples of Mexican soils. PCA was carried out in a
tage with the same 25 samples. Later, PCA was used fo
ification purposes, constructing a model of principal c
onents with the artificially polluted samples (90), and
nknown samples were predicted.
nto two subclusters (a1–a2 and b1–b2, respectively). Th
roup included the clean soil samples used as referenc
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Fig. 2. (a) Mean mass spectra of the samples of groups “a” and “b” (ms(a)
and ms(b), respectively) of the dendrogram of the Fig. 1, (b) of the subclus-
ters“a1” and “a2” (ms(a1) and ms(a2), respectively) and (c) of the subclus-
ters“b1” and “b2” (ms(b1) and ms(b2), respectively).

The differences in the signals produced by this separation
into two groups were seen by obtaining the mean spectra of
the two sample groups (Fig. 2). In the mean spectrum of the
“b” group [ms(b) inFig. 2a], it is possible to note the pres-
ence of signals corresponding to the characteristic patterns of
alkanes, such as the intensity ratio of fragments 57–71–85.
The mean spectrum of the “a” (ms(a)) group does not show
similarity with any other group of compounds present in
petroleum fractions.

It therefore seems that the two groups generated corre-
spond to samples polluted by hydrocarbons from petroleum
fractions (group “b”) and to samples unpolluted with this type
of compound (group “a”).

The division of group “a” into two subclusters – “a1” and
“a2” – can also be attributed to certain differences in the mass
patterns generated by the volatiles contained in them, and
these can be appreciated by comparison of the mean spectra
of each sample subcluster (ms(a1) and ms(a2) inFig. 2b),
although with this type of signal it is not possible to attribute
such differences to particular compounds.

From a comparison of the mean spectra of the “b1” and
“b2” subclusters (ms(b1) and ms(b2) inFig. 2c), it is possible
to observe more specific differences, such as those concern-
ing the intensity ratio of fragments 55 and 57, which could

be attributed to patterns of different alkanes, with a higher
content in cyclic alkanes in one of the two subclusters.

3.1.2. Principal component analysis
PCA is a technique used for reducing dimensionality that

is usually used in exploratory analysis as a method for visual-
ization. Here it was carried out using the same set of samples
as that used in the cluster analysis.

The first two principal components explained 95.6% of
the variance of the data (75.84% and 19.76%, respectively).
Plotting the scores of the samples in the second principal com-
ponent showed the division of the samples into two groups:
those with positive scores and those with negative scores
(Fig. 3a). It may be seen that all the samples with a posi-
tive score (among which were the reference samples of clean
soils) coincided with those from group “a” (Fig. 1) and the
samples with negative scores coincided with those belonging
to group “b”.

Fig. 3b shows that the loadings of principal component 2
were negative for variables corresponding to fragments typ-
ical of linear (57, 71, 85) and cyclic (55, 69, 83, 97) alka-
nes, such that it is likely that the samples showing negative
scores would correspond to soils in which compounds from
petroleum fractions are found.

PCA is the basis of the SIMCA technique, which is use-
f own

Fig. 3. (a) Plot of the scores of the samples with respect to the second
principal component; (b) plot of the loads of the second principal component
against them/z ratio.
ul for modelling classes and the later prediction of unkn
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samples. In this case, our interest lay not in deciding which
two classes or more a sample belonged to but, instead, in de-
ciding whether a sample belonged to a class (polluted with
compounds from petroleum fractions) or not. Whereas the
characteristics of the polluted samples are relatively well de-
fined, those of the unpolluted soil samples may vary consid-
erably.

To generate the model, we used the data available from
a set of samples obtained by spiking clean commercial sand
with different amounts two petroleum crude oils and a diesel
fuel. These samples had been measured two and a half years
before the unknown samples to be analysed, although as has
been reported earlier[21], the process of internal normaliza-
tion used as a technique for data pretreatment allows the use
of signals generated at very different times since variations
in the sensitivity of the apparatus are compensated.

With this set of samples, the first two principal components
explained 97.35% of the total variance and hence a model
with two components was fixed (Fig. 4a).

In PCA, predictions are carried out by projecting the un-
known samples onto the space defined by the principal com-
ponents of the training set. The decision as regards whether a
given sample differs significantly from those of the training
set is mainly based on the magnitude of the residuals when
that sample is projected onto the space of the model. From

F
s
o
u

these residuals it is possible to calculate a probability which
can then be compared with a limit value.

Fig. 4b shows the values of the residuals against the Ma-
halanobis distance for each of the unknown samples and the
three reference samples when they were projected in the prin-
cipal component model of the samples spiked at the labora-
tory with the two petroleum crude oils and the diesel fuel.

The samples located in the region that is clearly outside the
limits marked by both magnitudes (99% probability) should
be considered as samples that are significantly different from
those of the model; that is, samples free of pollution. These
samples (H, V, A, 1, 6, 7, 13, 15, 20, 21 and 22) are the same
as those that formed group “a” in the cluster analysis. Within
the limits for the model are all the remaining samples except
two (samples 4 and 5), which – although they are within
the limit for the Mahalanobis distance – slightly surpass the
limit values for the residuals. Using this classification system,
samples 4 and 5 could be considered as doubtful.

3.1.3. Linear discriminant analysis
Study of the signals using the LDA method was carried

out in two steps. In the first, a classification model was built
ig. 4. (a) Model obtained with the first two principal components corre-
ponding to samples at the laboratory from clean commercial sand; (b) values
btained upon projecting residuals against the Mahalanobis distance of the
nknown samples including the references samples from Mexico.

F
o
f
f

ig. 5. (a) Plots of the discriminant scores for the model (40 variables)
btained with clean sand samples (including the reference samples) and (b)

or the prediction of the external validation set formed by unknown samples
rom Mexico.
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in which the training set comprised spiked sand samples to
define the polluted class, and clean sand samples, the three
beach sand samples, and the reference samples – Histosol,
Vertisol, and Arenosol – to define the non-polluted class.

A StepLDA (stepwise linear discriminant analysis) vari-
able selection process was carried out in order to ob-
tain the greatest Mahalanobis distances between the closest
classes. To validate the model, a cross-validation process was
used[21].

The model was constructed with 20, 30, 40 and 50 vari-
ables and in all cases 100% hit rates were obtained both in
classification and in prediction. The increase in the number
of variables produced an increase in the separation between
classes, although dispersion among samples within the same
group also increased. For 40 variables (Fig. 5a) a suitable dis-
tance between classes was obtained, maintaining acceptable
dispersion within the group.

With this model we carried out the prediction of the un-
known set, in this case formed by the Mexican soil samples.
Fig. 5b shows the plot of discriminant scores for the predic-
tion set. All the samples grouped in the “b” cluster in the
hierarchical cluster analysis were recognised by the model
as polluted samples, just as the samples of the “a” cluster
were categorised within the non-polluted sample class. The
classification of samples achieved with the supervised pattern
r sults
o ogni-
t ed to
g sol)
w used
i the
c n of
p

ork.

3.2. HS–GC–MS measurements

As seen, use of the HS methodology permits simple and
rapid discrimination between samples polluted by hydrocar-
bons from petroleum and samples “free” of such pollution.
Accordingly, the technique can be employed as a screening
tool. Despite this, the profiles of the signal obtained do not
allow appropriate identification of the compounds present in
the different samples.

Table 2
List of compounds identified by HS–GC–MS in the soil number 10 with the
two columns used in this work

Compound HP-5MS column DB-VRX column

tRa Match
quality

tRa Match
quality

Linear alkenes
n-Heptane 3.919 85
n-Octane 5.323 70
n-Nonane 6.979 68 2.669 79
n-Decane 8.660 77 2.950 96
n-Undecane 10.266 77 3.243 94
n-Dodecane 11.779 78 3.545 94
n-Tridecane 13.200 82 3.855 94
n-Tetradecane 14.536 89 4.204 93
n-Pentadecane 15.798 88 4.612 92
n-Hexadecane 16.993 88 5.113 92

B

C

1,1,3-Trimethylcyclohexane 5.931 87
1,3,5-Trimethylcyclohexane 6.172 87

Benzene derivatives
Toluene 4.843 94
C2-Benzene 6.354 97
C2-Benzene 6.488 97 2.691 92
C2-Benzene 6.884 96 2.764 94
C3-Benzene 7.420 95
C3-Benzene 8.051 95 2.933 88
C3-Benzene 8.162 94
C3-Benzene 8.359 96 2.999 93
C3-Benzene 8.587 95 3.050 96
C3-Benzene 9.071 91 3.152 89
C4-Benzene 9.528 90 3.257 88
C4-Benzene 9.585 84 3.451 78
C4-Benzene 9.703 92 3.576 89
C4-Benzene 9.790 92
C5-Benzene 11.345 81 3.563 88

Naphthalene derivatives
C1-Naphthalene 13.251 80 4.144 91
C1-Naphthalene 13.496 89 4.217 87
C2-Naphthalene 14.939 94
C2-Naphthalene 14.985 90
a tR = retention time (min).
ecognition technique is thus in concordance with the re
btained previously using the unsupervised pattern rec

ion techniques. The fact that most of the samples us
enerate the model (except Histosol, Vertisol and Areno
ere measured two and a half years before the samples

n the prediction points to the stability of the model and
apacity of the methodology proposed for the detectio
ollution by hydrocarbons from petroleum.

Fig. 6. Chromatograms obtained with the two columns used in this w
n-Heptadecane 18.128 90 5.741 90
n-Octadecane 19.208 88
n-Nonadecane 20.240 81

ranched alkenes
2,6-Dimethylundecane 11.975 74
2,6,11-Trimethylundecane 12.441 77
2,6,10-Trimethyldodecane 14.228 89

yclic alkenes
Methylcyclohexane 4.221 86 2.349 83
1,3-Dimethylcyclohexane 4.997 84
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With a view to identifying the major hydrocarbons and in
order to unequivocally check the results obtained with the
chemometric techniques used previously, we performed a
chromatographic analysis of all the Mexican soil samples.
Conventionally, this analysis is carried out with capillary
columns (HP-5MS in this work), which prolongs the anal-
ysis time to a considerable extent (18 min). Therefore, in
this work we also carried out a chromatographic analysis us-
ing a capillary column for fast chromatography (DB-VRX),
with which it was possible to reduce the time of analysis to
6 min, such that even this second confirmation step would be
rapid.

Fig. 6shows the chromatograms corresponding to one of
the polluted soils (sample 10) recorded using the two chro-

Table 3
List of compounds identified by HS–fast GC–MS in the polluted soils studied

Compound tRa Samples

8 9 10 11 12 14 16 17 18 19

Linear alkenes
n-Nonane 2.669 X X X X
n-Decane 2.950 X X X X X X
n-Undecane 3.243 X X X X X X
n-Dodecane 3.545 X X X X X X X
n-Tridecane 3.855 X X X X X X X
n-Tetradecane 4.204 X X X X X X X

X
X
X

B

X

C
X

B

N

matographic modes, obtained with the total ion current (TIC)
mode. As well as a reduction in the time of analysis, it may
be seen that both chromatograms have a similar shape, typi-
cal of samples polluted with hydrocarbons. Identification of
the different hydrocarbons present in the sample was accom-
plished with the extracted ion chromatograms. Thus, linear
and branched (m/z= 57, 71, 85) hydrocarbons, cyclic alkanes
(m/z= 55, 69, 83), and hydrocarbons derived from benzene
(m/z= 91, 105, 119) and from naphthalene (m/z= 128, 142,
156) were identified.Table 2shows the compounds identified
in each sample, using both the HP-5MS and the DB-VRX
columns, together with the retention times and the match
quality between the experimental spectrum and that of the
database used for identification.
n-Pentadecane 4.612 X
n-Hexadecane 5.113 X
n-Heptadecane 5.741 X
n-Octadecane 6.553

ranched alkenes
3-Methylnonane 3.781
2,6,10-Trimethyldodecane 4.139 X
2,8-Dimethylundecane 4.466 X
2,6-Dimethylundecane 5.428 X
2,6,11-Trimethylundecane 5.823 X

yclic alkenes
Methylcyclohexane 2.349
1,1,3-Trimethylcyclohexane 2.604

enzene and derivatives
Benzene 2.260

Toluene 2.445
C2-Benzene 2.688
C2-Benzene 2.691 X X
C2-Benzene 2.764 X
C3-Benzene 2.933 X
C3-benzene 2.999 X X
C3-Benzene 3.050 X X
C3-Benzene 3.152 X X
C4-Benzene 3.257 X X
C4-Benzene 3.451 X
C4-Benzene 3.576 X
C5-Benzene 3.563 X
C5-Benzene 3.667

aphthalene and derivatives
Naphthalene 3.746
C1-Naphthalene 4.144 X X
C1-Naphthalene 4.217 X X
C2-Naphthalene 4.529
a tR = retention time (min).
X X X X
X X X X
X X X X

X

X X X X
X X X X X

X X X X
X X

X X X

X X X

X

X X

X
X X X

X X X
X

X X X
X X
X X

X X X
X X
X X
X X

X

X X
X X X

X X X X
X
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The information gained from both columns was similar,
although the fast GC mode afforded less resolution power
and hence the number of compounds appropriately identified
was lower. However, from the data shown in the table it may
be deduced that fast chromatography provides sufficient in-
formation concerning the major hydrocarbons present in the
samples of polluted soils.

With these results, fast GC was used for the identification
of hydrocarbons in all the soil samples from Mexico.Table 3
shows the major compounds found in the samples classified
as polluted using the HS–MS methodology, with the excep-
tion of samples 2, 3, 4 and 5. It may be seen that in most sam-
ples linear, branched and cyclic alkanes and some derivatives
of benzene and naphthalene were identified as major com-
pounds. Nevertheless, in some of the samples analysed (sam-
ples 12, 14 and 16) the main source of pollution was related
to branched hydrocarbons.Fig. 7shows two chromatograms,
corresponding to samples 16 and 18, representative of the two
types of sample. It may be seen that the shapes of the chro-
matograms are clearly different. In the case of sample 18,
it is patent that the major peaks are those corresponding to
linear hydrocarbons, while for sample 16 the chromatogram
has less well defined peaks, among which almost exclusively
branched hydrocarbons are identified.

The remaining samples classified as polluted by LDA
( nsity
o low
d orre-
s m
o nd it
w id-
u ible

F ples
w

Fig. 8. (a) Chromatogram corresponding to soil 4 (unresolved hydrocarbons)
and (b) average spectrum (from 1.8 to 7.5 min) of the same sample.

to obtain the mean spectrum (Fig. 8b), in which it is possible
to observe the characteristic profile of samples polluted with
hydrocarbons withm/z ratios of 57, 71, 85, 55, 69, 83, 97,
105, etc. These profiles clearly justify the inclusion of these
samples within the polluted class.

The chromatograms of the unpolluted samples show very
weak signals of chromatographic peaks and in no case do
their mean spectra correspond to profiles typical of pollu-
tion by hydrocarbons. This allows us to affirm that all sam-
ples in which no remains of hydrocarbons were detected by
HS–GC–MS were classified as unpolluted by HS–MS. The
minimum concentration in the training set used to build the
model for prediction by HS–MS was 1.2 mg/kg and all sam-
ples were correctly classified in the cross-validation step, so
the limit for false negatives has to be≤1.2 mg/kg with this
technique.

4. Conclusions

The use of a headspace sampler coupled to a mass spec-
trometer offers a simple and effective tool for the rapid
detection of contamination of soils by hydrocarbons from
petroleum and derivatives. The mathematical treatment of
the signals generated by the system, with a previous data nor-
malization process, by chemometric techniques allowed the
c am-
p red
s ly, to
p gen-
e

ap-
p ere
samples 2, 3, 4 and 5) are characterised by the low inte
f the chromatographic signals, indicating a relatively
egree of pollution. The shape of the chromatograms c
ponding to these samples (Fig. 8a shows the chromatogra
f sample 4) is characteristic of unresolved species a
as thus impossible to perform the identification of indiv
al hydrocarbons. Despite this, for all of them it was poss

ig. 7. Chromatograms obtained with a DB-VRX column for two sam
ith different shapes.
omplete discrimination of polluted and non-polluted s
les. The ability of the models built with laboratory-prepa
amples, and measured two and a half years previous
redict real samples points to the stability of the models
rated.

The results obtained with the chemometric methods
lied to the profile signal obtained by HS–MS coupling w
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confirmed by fast GC mass spectrometry, which allows suit-
able identification of the major hydrocarbons present in the
polluted samples in less than 6 min.

The results obtained allow us to affirm that the HS–MS
methodology offers a powerful screening tool for the detec-
tion of pollution by hydrocarbons in soils with very different
characteristics (organic and mineral soils). While PCA and
HCA techniques are useful as preliminary visualization tools,
LDA can be used to classify unknown samples as polluted
or unpolluted. In cases in which the specific identification of
individual pollutants is required, coupling with GC affords
satisfactory results without excessively lengthening the time
of analysis.
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